Anchor cell signaling and vulval precursor cell positioning establish a reproducible spatial context during C. elegans vulval induction.
نویسندگان
چکیده
How cells coordinate their spatial positioning through intercellular signaling events is poorly understood. Here we address this topic using Caenorhabditis elegans vulval patterning during which hypodermal vulval precursor cells (VPCs) adopt distinct cell fates determined by their relative positions to the gonadal anchor cell (AC). LIN-3/EGF signaling by the AC induces the central VPC, P6.p, to adopt a 1° vulval fate. Exact alignment of AC and VPCs is thus critical for correct fate patterning, yet, as we show here, the initial AC-VPC positioning is both highly variable and asymmetric among individuals, with AC and P6.p only becoming aligned at the early L3 stage. Cell ablations and mutant analysis indicate that VPCs, most prominently 1° cells, move towards the AC. We identify AC-released LIN-3/EGF as a major attractive signal, which therefore plays a dual role in vulval patterning (cell alignment and fate induction). Additionally, compromising Wnt pathway components also induces AC-VPC alignment errors, with loss of posterior Wnt signaling increasing stochastic vulval centering on P5.p. Our results illustrate how intercellular signaling reduces initial spatial variability in cell positioning to generate reproducible interactions across tissues.
منابع مشابه
lin-25, a gene required for vulval induction in Caenorhabditis elegans.
During vulval development in the Caenorhabditis elegans hermaphrodite, the fates of six vulval precursor cells (VPCs) are influenced by distinct cell signaling events. In one event, a somatic gonadal cell, the anchor cell, induces the three nearest VPCs to adopt vulval cell fates. In another event, lateral signaling between adjacent VPCs specifies one of two different vulval fates, 1 degrees an...
متن کاملReciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia
BACKGROUND Reciprocal signaling between distinct tissues is a general feature of organogenesis. Despite the identification of developmental processes in which coordination requires reciprocal signaling, little is known regarding the underlying molecular details. Here, we use the development of the uterine-vulval connection in the nematode Caenorhabditis elegans as a model system to study recipr...
متن کاملcis-Regulatory Control of Three Cell Fate-Specific Genes in Vulval Organogenesis of C. elegans and C. briggsae
The great-grandprogeny of the Caenorhabditis elegans vulval precursor cells (VPCs) adopt one of the final vulA, B1, B2, C, D, E and F cell types in a precise spatial pattern. Formation of the pattern of vulval cell types is likely to depend upon the cis-regulatory regions of the transcriptional targets of these intercellular signals in vulval development. The outcome of such differential activa...
متن کاملThe Hox gene lin-39 is required during C. elegans vulval induction to select the outcome of Ras signaling.
The Ras signaling pathway specifies a variety of cell fates in many organisms. However, little is known about the genes that function downstream of the conserved signaling cassette, or what imparts the specificity necessary to cause Ras activation to trigger different responses in different tissues. In C. elegans, activation of the Ras pathway induces cells in the central body region to generat...
متن کاملMosaic analysis of the let-23 gene function in vulval induction of Caenorhabditis elegans.
The let-23 receptor tyrosine kinase gene is required for vulval induction and larval survival in the nematode Caenorhabditis elegans. We carried out genetic mosaic analyses of the let-23 gene function by using the cloned let-23 and ncl-1 genes. The wild-type let-23 gene was required in a vulval precursor cell to adopt the 1 degree vulval fate in animals carrying a let-23 vulvaless or lethal chr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 416 1 شماره
صفحات -
تاریخ انتشار 2016